Project Production Institute
Challenges and Myths of Offsite Fabrication for Mega Projects

Alan Richard
Director Capital Projects
Deloitte Transactions and Business Analytics LLP

December 3, 2014
How did we get here and why is there a need for change in project delivery?

• Increasing non-standard projects with challenges
 – Technology (deep water, pre-salt, Arctic)
 – Organization (multiple owners)
 – Geopolitical (location, non-commercial interests)

• Performance is declining despite:
 – Best in class process (FEL and Stage Gate)
 – Best in class systems (sophisticated & proprietary)
 – Best personnel

• Risk is being declined by the EPC contractors
 – Performance incentives have minimal effect
 – Risk increasingly carried by owners

• Pressure to improve ROC or Capital Efficiency
What has been the industry response to increasingly poor project performance

• Increasing owner supervisory staff numbers
• Increasing detail and assessment for front end loading
• Non-standard custom intervention on projects
• Global procurement
• Changes in methods (Modularization)
3rd level Modular Site Envelope Statistics

Traditional 320,000 m²

2nd level 200,000 m²

3rd Level 84,000 m²
3rd Level Modularization
Quantities Impact

QUANTITY DELTA 2nd GEN TO 3rd GEN

<table>
<thead>
<tr>
<th>COST ACCOUNT</th>
<th>Percentage Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation & Piling</td>
<td>-35%</td>
</tr>
<tr>
<td>Concrete</td>
<td>-60%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>+50%</td>
</tr>
<tr>
<td>Buildings</td>
<td>0%</td>
</tr>
<tr>
<td>Mechanical Equipment</td>
<td>-20%</td>
</tr>
<tr>
<td>Piping</td>
<td>-20%</td>
</tr>
<tr>
<td>Electrical</td>
<td>0%</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>0%</td>
</tr>
<tr>
<td>Insulation</td>
<td>-20%</td>
</tr>
</tbody>
</table>
3rd level Modularization
Quantities, Effort Hours and Cost Impact
3rd Level Modularization
Execution/Engineering Differences

• “Modularization drives layout”, not the layout driving modularization
• Integration required across the entire supply chain
• Vendor data is critical to support the design
• Engineering must work as a totally integrated team
• Interconnecting pipe racks not used
• Offshore design practices utilized where practical
• Weight and dimension management critical to success
Case Study

3rd Level Modularization Cost Impact

• When Modularization applied to 75% of the total project:

• Cost savings resulting from:
 − Reduced quantities due to smaller footprint
 − Productivity gain for work shifted to shop
 ○ Average 40% decrease in hours for module assembly vs. equivalent scope in the field
 − Reduced indirect costs with less field hours
Modularization Integrated Planning, Supply Chain Management and Project Execution

Modular engineering has additional constraints
 • Module boundary defines available volume
 • Effective layout dependent on component dimensions

Engineering work packages are more detailed
 • Certified vendor data required earlier
 • Parallel multi-discipline collaboration
 • Vertical distributed execution with New Delhi

Fabrication work packages are highly structured
 • Modeling more detailed
 • Compilation of documents required earlier
 • Fabrication shop input during design
 • Material delivers critical

Work face planning
 • Dependent on receipt of information and materials
Case Study
Modularization Execution Differences

Design and Module Assembly
• Module fabricators participated in constructability reviews
• Complete E&I installation pre-module shipment
• Module shop completions and pre-commissioning activities
 – Hydro-testing and flushing
 – Insulation
 – Vessel inspection and final closure
 – Cold alignment
 – Continuity testing and motor run-ins
 – Instrument calibration
• Complete turnover packages at module shop
Case Study
Modularization Execution Differences

Material Management
• Early focus on all POs for vendor data
 − Engineering only release of initial POs
 − Commercial protection (cancellation, pricing and escalation)
• Supply agreements
 − Equipment (client preferred vendors) incl. electrical
 − Structural steel
 − Piping bulks
 − Electrical cables
 − Controls Systems
 − Main automation contractor
• Material planning and control
 − Same process as steel and piping for 2nd Generation
 − Extend to E&I
 − Use of material management system
 − Expediting for specific module needs
• Solid Logistics and Weight Management Plan
Case Study
Modularization Execution Differences

Site Construction
• Construction sequence firmly established in FEED
• Modularization schedule based on construction sequence
• Engineering deliverables based on modularization schedule
• Shifted the work to the module yard
• Significantly smaller CM team
• E&I shop work dramatically reduces back-end completion scope and complexity
• Reduced risk
 - Enhanced safety (Key selection criteria on module bidders)
 - Improved operations and maintenance
 - Less winter schedule issues
 - More work in controlled environment
 - Reduced schedule once modules in place
 - Cost and schedule certainty with reduced E&I field scope
Challenges
• Engineering design is more complex
• Competent modular design skills in short supply (offshore skill)
• Full Integration of team is vital
• Design information is required in different and more complete form
• Global supply chain exponentially increases difficulty
• Integrated vendors are beginning to have competitive advantage
• Requirement for manufacturing production skills
• Logistic evaluation a key deliverable

Myths
• Saves money – total lifecycle cost is higher as focus is shifted
• Can be managed by construction staff and labor
• Less problems during execution
• Changes can be incorporated
Ultimate modularization
Shell Prelude
Questions?