

Applying Computer-Aided Production Engineering (CAPE)

PPI Annual Symposium

09 December 2020

Ludwich Raubenheimer & Darina Zhakasheva

© Tengizchevroil 2020

Greenfield Project

CAPE during Construction

Focus on Pipelines

Brownfield Project

CAPE during Early Engineering

Focus on Cutovers

Why CAPE – Our drivers to innovate / look for better ways

What we mean by CAPE – What it is and what it is not

Our journey applying CAPE – Construction and Engineering

What we have learned to date

Drive Excellence in Project Performance

Be more effective at handling inherent complexity and risks at the execution level

Better define and design how we do field operations before we do them

How best to **simultaneously** design the asset and the process to build it and capture lessons learned for future applications

What are we implementing?

CAPE IS:

About the design and optimization of field operations that are either repetitive or one-offs (you have only once chance to get it right) during engineering or construction or both

CAPE IS NOT:

A constructability review that looks to identify interferences between systems

Our First CAPE Application – 93 Expansion Loops

Reduced cycle time by 30%

Reduced \$5 M on labor

Identified 9 design issues using the construction digital prototype

Identified 27 Fabrication / Construction improvement opportunities during First Run Studies

Visualizing & Testing the Design of the Process

Install second T2 box

Place dowel

Continue with Box Installation

Digitally in the Computer

Physically before doing it in the Field

Install T3 box

Pipeline Crossings – More than 4000

Stringent Specifications and Safety Requirements

Dynamic SIMOPS linked to Operations

Complex high concentration of multiple crossing types co-located in one area

Execution Strategy critical to align with operational shutdown schedule

Open Cut

Above Ground

Trenchless

Cycle Time highly variable due to site constraints and execution method

Productivity challenged by dewatering activities and ineffective coordination and planning of shared resources

Critical Path scope to complete Pipeline scope

4D Visualization - Is the Process Design Robust / Optimal?

Process Design

(Sequence, Handoffs, SIMOPS, etc.)

Executing 690V Cutovers – Applying CAPE During Engineering

~ 2044 690V hot cutovers

30 years old facility / brownfield

Site congestion / live equipment / H2S

Limited personnel onsite - schedule impacts

Compatibility between old and new equipment

Weather limitations

Process Design – **How** to do the work?

#	Sub. #	SWBD#, Circuit #	Cable #	Cable Size	Cable disconn ect (min)	Cable pulling out of RP (min)	Cable cut, megger test (min)	Splice kit installat ion (min)	Final megger test (min)
1	RP-1	SWBD#1, A7-7	03-P-139	3x2.5mm2+1x2.5mm2	30	10	30	30	15
2	RP-1	SWBD#1, A10-3	08-P-106	3x2.5mm2+1x2.5mm2	30	10	30	70	15
3	RP-1	SWBD#2, A4-10	002-P-213	3x150mm2+1x150mm2	30	20	30	180	15
4	RP-1	SWBD#2, B9-4	08-P-211	3x4mm2+1x4mm2	30	10	30	50	15
5	RP-1	SWBD#3, A6-4	07-P-128	3x35mm2+1x35mm2	30	15	30	115	15
6	RP-1	SWBD#3, A4-4	07-P-144	3x70mm2+1x50mm2	30	15	30	130	15
7	RP-1	SWBD#4, B6-5	10-P-102	3x6mm2+1x6mm2	30	10	30	60	15
8	RP-1	SWBD#4, B7-3	02-P-183	3x6mm2+1x6mm2	30	10	30	60	15
9	RP-2	SWBD#1, B4-7	02-P-157	3x2.5mm2+1x2.5mm2	30	15	30	105	15
10	RP-2	SWBD#1, A8-9	04-C-103	7x2.5mm2	30	15	30	100	15
11	RP-2	SWBD#2, A8-10	05-P-228	3x2.5mm2+1x2.5mm2	30	15	30	145	15
12	RP-2	SWBD#2, B7-8	04-P-202	3x70mm2+1x50mm2	30	20	30	140	15
13	RP-2	SWBD#3, A6-2	07-P-221	3x6mm2+1x6mm2	30	20	30	110	15
14	RP-2	SWBD#3, B3-3	07-P-209	3x6mm2+1x6mm2	30	15	30	120	15
15	RP-2	SWBD#3, B6-1	07-P-150	3x2.5mm2+1x2.5mm2	30	25	30	130	15
16	RP-2	SWBD#3, A4-4	07-C-144	5x2.5mm2	30	20	30	125	15
17	RP-2	SWBD#1, B4-7	02-C-157	4x2.5mm2	30	20	30	120	15

0	1	2	3			
37558 Pull New cable from Splicing P	oint to New RP					
37567 Identify position of f	eeder on switchboard at substation Best	Case Scenario - 15 min Worse Case Sc	enario - 30 min			
37568 Lockout/Tagout E	quipment @ sub-station Best Case Scen	ario - 15 min Worse Case Scenario - 30	min			
37571 Test cable to er	sure no voltage with Multimeter					
37562 Disconnect or Cut cable from	Switchboard (MCC)& Dress Best Case So	enario - 10 min for small cable (per one	cable) Worse Case Scenario - 60 min			
37569 Ground	Cable					
37566 Identify	Equipment in the field and make sure the	at cable is de-energized at Load				
37565 Lock	out/Tagout Equipment @ Plant HOA stati	on Best Case Scenario - 15 min Worse	Case Scenario - 30 min			
37559 Te	st cable for voltage with Multimeter					
37564	Disconnect cable from consumer/load B	est Case Scenario - 15 min Worse Case	Scenario - 60 min			
375	72 Megger test for cable integrity IR a	nd PI				
.3	561 Dress and insulate cable ends B	est Case Scenario - 5 min Worse Case S	cenario - 30 min			
	37570 Remove ground and insulate of	able end				
.37560 Spike cable to make sure cable is not live (de-energized) WORST CASE						
	37573 Pull existing	cable to splice point Duration depends (in cable size and length			
	37556	Perform Insulation Resistance (IR) test	on New Cable			
	,37574	Splice old and new cable using splice	kit instructions			
	37659	Check and verify protection settings at r	new RP			
		37547 Inspect and Test the C	able			
		37546 Perform Final Megge	er Test			
		37545 Remove insulatio	n and terminate at Load			
		37542 Assemble and (Crimp Lug at switchgear			
		37541 Tape and he	at seal lug			
		37540 Connect C	able to Switchboard			
		37657 Perform Continuit	y Test by Multi meter or Megger Test			
	376	58 Complete Bump Test on Motor (Ch	eck motor rotation (for motor only))			
	37557	Seal, label and abandon old cable from	n splicing point to old RP switchboard			
		37539 Complete Docu	nentation and Release to Operations			

Designing the cutover field operation (NOT a schedule)

Initial Field Data

Product Design – Current Conditions & New Asset

Point Cloud – Existing Infrastructure & Conditions

Product Design – Temporary & Permanent Elements

Simultaneous Process / Product Design

What We Are Learning

Enhanced understanding of constraints in the product and process design enables us to focus on the key areas and take the required actions/mitigations to improve execution cycle time, thus increasing throughput

Learnings and experience from current execution reality are now informing the digital model enabling the implementation of improvements and redesigning and testing of the future process before execution

Better understanding of the complexity of a process or workflow to inform early schedule development

Early engagement with engineering maximizes potential benefits to identify and address potential conflicts and omissions

The Implementation of CAPE forces alignment on the process from the start