

Factory Physics [®] Analytics with applications to Project Production

FACTORY PHYSICS is a registered trademark of Factory Physics Inc. All rights reserved.

Why Factory Physics Analytics?

- Projects are like factories
 - Have deliverables with deadlines to meet a demand
 - Have capacity limitations in the productive processes
 - Can perform some production ahead of demand
 - Have variability in both "production" and demand
- Factory Physics addresses
 - Demand
 - Production
 - On time delivery
 - Variability
 - And how they interact

Factory Physics Inc

- Core Competence:
 - Wrote 'the book' on operations performance
 - IIE Book of the Year
 - Application of scientific principles to improving operations performance
- Clients
 - European, North and South American manufacturers

- Global Operations Based in U.S.A
 - Established in 2001 based on 22 years of research

A consulting company with software.

Strategy. Execution. Profit.

What makes this approach different?

- It is scientific—science relentlessly tested in industry
- It has software to standardize analysis and learning
 - Rapid modeling, data obtained from existing systems
 - Efficient frontier curves to quickly identify opportunities
 - Where do you want to operate? Where can you operate?

Ability Matrix	Current State Analysis		Future State Analysis	
Approach	Speed	Detail	Predictive	Optimal
Factory Physics Analytics	2 weeks	Moderate	Yes	Yes
Six Sigma	3+ months	NA	No	No
Lean	1 week	Low	No	No
Monte Carlo Simulation	3 months+	High	Yes	No

Strategy. Execution. Profit.

How to Profit from Science?

- When to make it?
- How much to make?

FACTORY PHYSICS

Third Edition

Wallace J. Hopp Mark L. Socarman

- How many people and machines do I need?
- How much inventory should I have?

Value Chain Excellence: High On-time delivery, low cost, low inventory

Strategy. Execution. Profit.

To drive profits, there are many levers a supply-chain executive must control

Strategy. Execution. Profit.

Strategy. Execution. Profit.

The goal of supply chain management

Many managers bounce back and forth and call it continuous improvement.

Project Production—no variability: demand = capacity, no waiting

Strategy. Execution. Profit.

Project Production—with variability: capacity > maximum demand

Start early but no waiting

Strategy. Execution. Profit.

Project Production—with variability: max dmd > capacity > mean dmd

Start early and still late

Strategy. Execution. Profit.

Project Production—with variability: little extra capacity

Start early and very late

Strategy. Execution. Profit.

The Fundamental Factory Physics[®] Framework

How it Works

$$d\mathbf{p} = (\{\mathbf{p}, \mathcal{H}\} - \eta \mathbf{p}) dt + \beta dW$$

$$d\mathbf{q} = \{\mathbf{q}, \mathcal{H}\} dt$$

$$\mathbf{p}(0) = \mathbf{p}_0$$

$$\mathbf{q}(0) = \mathbf{q}_0$$

There's physics behind Factory Physics science.

Strategy. Execution. Profit.

Demand—Stock—Production

Strategy. Execution. Profit.

More variability in production— Less variability in net inventory

Strategy. Execution. Profit.

Low variability in production— High variability in net-inventory

Strategy. Execution. Profit.

Buffers in Project Production

- Inventory—pre-fabrication
 - Prefab units
 - Prepare materials (e.g., rebar, etc.) before hand
- Time—quoting lead times
 - Lead time depends on current queue.
 - Average lead time will be less then using a constant lead time for same on-time delivery
- Capacity—mitigate variability
 - Recourse capacity (e.g., extra shift, weekend, overtime)
 - No recourse = delays

Strategy. Execution. Profit.

Application of Factory Physics Analytics

Strategy. Execution. Profit.

Some Basic Factory Physics Principles

- Little's Law
 - Relates basic plant
 performance measures

WIP = (Cycle Time)(Throughput)

- VUT Equation
 - Quantifies queueing effects
 - Relates variability, capacity, and time buffers

$$CT_q \approx V \times U \times t$$
$$\approx \left(\frac{c_a^2 + c_e^2}{2}\right) \left(\frac{u}{1 - u}\right) t_e$$

- Variance of Replenishment Time Demand
 - Drives inventory and service
 - Accounts for variability in demand AND supply

$$\sigma^2 = t\sigma_D^2 + d^2\sigma_T^2$$

Appropriate use provides predictive control and optimal performance.

Law: Cycle time increases sharply as utilization goes to 100%

You will not schedule at 100% utilization over the long term.

Strategy. Execution. Profit.

Performance Graph for Throughput, WIP and Cycle Time

Best combination of Revenue, Working Capital, and Response Time

Efficient Frontiers for Stock

Strategy. Execution. Profit.

Efficient Frontiers for Stock

Set optimal RM, Kanban, and/or FG for desired customer service.

Best Possible Performance Goals

Strategy. Execution. Profit.

- Flows
 - Maximum throughput with minimum cycle time
- Stocks
 - Highest service level at minimum cost

The final measure is cash flow.

Strategy. Execution. Profit.

The Factory Physics approach provides complete, predictive control.

Managing Working Capital

An overview of what is possible.

Case I: *Learning to See* by Rother and Shook

o Two Parts

- Left Bracket \$10.00
- Right Bracket \$ 1.00
- \circ Time in system
 - Raw material 5 days
 - Work in process 14 days
 - Finished goods 12 days
- Working capital for two parts
 - Finished goods \$83.5 K
 - Work in process \$91.3 K
- On time delivery 88%
- $\circ \sim I$ hour per day

Current State Map

Strategy. Execution. Profit.

Source: Lean Enterprise Institute

Current State

Strategy. Execution. Profit.

Absolute Benchmarking

Strategy. Execution. Profit.

Overview of the Process

- 1. Determine the efficient frontier (i.e., min inventory investment for given service level)
- 2. Move to the frontier by optimizing policies
- 3. Move the frontier with improvements to the operation
- 4. Move to the new frontier by re-optimizing the policies and continue
- Strategy. Execution. Profit.

Step 1 Reduce Inventories • Optimize Inventory • Little's Law • Optimize lot sizes, safety stocks • Reduce • Repeat • Reduce virite's Law

Strategy. Execution. Profit.

No change to environment (yet!)

Results

- Reduce inventory from \$83.5K to \$76.4K
- Increase fill rate from 88% to 89%

Control WIP with Little's Law

CONWIP is a general pull strategy that can be used in a high-mix environment

Strategy. Execution. Profit.

Control WIP—Check Throughput

When Virtual Queue exceeds limit ... Use "recourse" capacity or push out due dates

Strategy. Execution. Profit.

Before and after reducing WIP

Cycle time = 14.0 days WIP = 91.3 K\$ Cycle time = 11.9 days WIP = 77.9 K\$

Strategy. Execution. Profit.

Before and after optimizing lot sizes

Cycle time = 11.9 days WIP = 77.9 K\$ Cycle time = 2.7 days WIP = 16.9 K\$

Strategy. Execution. Profit.

Repeat Step 1 for improved environment

Strategy. Execution. Profit.

Before and after re-optimization

Fill Rate	= 89 %	Fill Rate	= 95 %
FG	= 76.4 K\$	FG	= 24.6 K\$

Step 3: Reduce variability and waste Re-optimize

Strategy. Execution. Profit.

Reduce variability and waste

- Better balance of line.
- Employ standardized processes in the work place using 5S
- Reduce down time with FMEA and SMED.
- Re-optimize after improving environment

Strategy. Execution. Profit.

Before and after reducing variability and waste

Fill Rate	= 95.0%	Fill Rate	= 98 %
FG	= 24.6 K\$	FG	= 5.55 M\$
WIP	= 16.9 K\$	WIP	= 3.70 M\$
Cycle time	= 2.7 days	Cycle time	= 0.60 days
	Finished Goods		Finished Goods
\$120,000 \$100,000 \$80,000 \$60,000 \$60,000 \$20,000 \$20,000	•	\$120,000 \$100,000 \$800,000 \$800,000 \$800,000 \$800,000 \$200,000 \$200,000	
0 50 65 % 70 % 75 % 80	0% 85 % 90 % 95 % 100 % Fill Rate Month Image: Fill Rate 64 Orders/Month Image: Actual	\$0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85 % 90 % 95 % 100 % Fill Rate 400 rders/Month Actual Predicted

Initial and Final States

Eliminated all overtime.

Strategy. Execution. Profit.

Conclusions

- The improvements were dramatic
- The improvements were the result of changing both
 - The policies (larger improvements) and
 - The environment (smaller improvements)
- Lean and Six Sigma focus on the environment
- Factory Physics methods can optimize policies and identify improvement opportunities in the environment

