

PROJECT PRODUCTION INSTITUTE

Engineering acceleration using Project Production Management

case study, December 2018

Jan Koeleman | Partner McKinsey & Company Email: jan_koeleman@mckinsey.com

Hubert Heersche | Partner McKinsey & Company Email: hubert heersche@mckinsey.com

PROJECT PRODUCTION INSTITUTE

© Copyright 2018 – Project Production Institute

Client struggling to deliver engineering as per schedule

Context

- Advanced Industries client in engineering phase of major project in Europe
- Engineering scope critical to unlock long lead procurement activities
- Challenging regulatory environment with design inputs from multiple stakeholders
- Low clarity on overall engineering process
- Challenges to deliver on customer requirements and schedule

- Our approach
 - Deploy Project Production Management:

PROJECT PRODUCTION INSTITUTE

SOURCE: McKinsey Capital Projects and Infrastructure Practice © Copyright 2018 – Project Production Institute

Challenges experienced by project team

Tasks needed to complete engineering **not fully defined, aligned or, worst case, known**

Siloed approach with too infrequent or inefficient interaction and alignment between individuals and/or sub-teams

Fragmentation of resources leading to sub optimal prioritization at working/ task level

No early warning or visibility on (risk of) delays

Focus on excuses and blame, not on addressing the root causes for delays in task execution

Build up of work-in-process resulting in deliverables taking longer and longer to complete

SOURCE: McKinsey Capital Projects and Infrastructure Practice © Copyright 2018 – Project Production Institute

Detailed process mapping set the stage Engineering process defined and tested with project team

Process mapping captured:

- Activity sequences and handoffs
- Work load and level of effort
- Capacity constraints of team members

SOURCE: McKinsey Capital Projects and Infrastructure Practice

© Copyright 2018 – Project Production Institute

Engineer feedback

This exercise has been **extremely helpful** in defining required work to deliver

I don't know why we didn't have this in place earlier. It has been a **breath of fresh air** to understand what we need to get done

I really see the value this map has in helping the team to deliver

PROJECT PRODUCTION INSTITUTE

Initial analysis highlighted likely bottlenecks

Bottleneck analysis of throughput of engineering Throughput capacity per year in number of designs		— — Peak throughput 🤌 Likely bottleneck 🔝 Below capacity 🖬 Sufficient capacity		
Department	Design type 1	Design type 2	Design type 3	
Team 1			\$	
Team 2	\$			Bottleneck analysis on
Team 3		₽ I		mapped
Team 4		\$		identified
Team 5				bottlenecks
Team 6				and areas of concern
Team 7				

SOURCE: McKinsey Capital Projects and Infrastructure Practice

© Copyright 2018 – Project Production Institute

Dynamic model (Discrete Event Simulation) predicted a five month schedule overrun

With baseline model established, scenarios tested to explore benefit of interventions to meeting project schedule

SOURCE: McKinsey Capital Projects and Infrastructure Practice © Copyright 2018 – Project Production Institute

PROJECT PRODUCTION INSTITUTE

Levers to optimize cycle time and throughput

Levers reviewed and prioritized with the project team

PROJECT PRODUCTION INSTITUTE

SOURCE: McKinsey Capital Projects and Infrastructure Practice © Copyright 2018 – Project Production Institute

Targeted interventions could deliver project within current schedule

SOURCE: McKinsey Capital Projects and Infrastructure Practice

© Copyright 2018 – Project Production Institute

PROJECT PRODUCTION INSTITUTE

PPC set up to drive daily work and capture the data required to refine the model

PPC kicked off

- Standard process used to define production schedule & production plan
- Structured review of production plan tasks completed to assess commitment reliability and plan adherence
- **Root cause** of incomplete tasks captured, with preventative actions defined

SOURCE: McKinsey Capital Projects and Infrastructure Practice © Copyright 2018 – Project Production Institute Outputs from production control week 1 100 75% Commitment reliability (% planned 50 Trend to be monitored over coming weeks tasks using production plans complete) 0 Week 36 Week 37 Week 38 Week 39

Categories of incomplete tasks , Number of incomplete tasks

	Category	Count	Detail
Poot course	Tools & equipment		Incomplete training for IT system
categories for incomplete tasks	Under estimated workload		First of type design activities
·	Priority change		Management re-direction on priority

PROJECT PRODUCTION INSTITUTE

Week 40

PPM brought tangible benefits to project while setting teams up for future performance improvement

Interventions made

Mapped three engineering processes through 10+ workshops with all relevant stakeholders

Dynamic simulation model created one solution to identify critical path and potential bottlenecks

Identification of 10+ initiatives to optimize process incl. capping of WIP and introduction of production control

Established weekly production control meeting to discuss progress and potential blockers, and capture data for model

Trained two clients in production control tool and coached teams on task prioritization and internal communication

SOURCE: McKinsey Capital Projects and Infrastructure Practice © Copyright 2018 - Project Production Institute

Impact realized

- Visibility:
 - Workflow of activities to follow identified
 - Projected finish date estimated
 - Impact of interventions on delivery schedule assessed
- Schedule de-risking:
 - 5 months compression potential on critical engineering
- **Capability building:**
 - 2 production control facilitators in training
 - ~20 people introduced to project production management

