

The opportunity

Engineering has experienced late delivery, cost overruns and rework (quality) due to current approach to managing work which facilitates low reliability, high variability and lack of predicable outcomes.

- Complex projects with long durations
- Lack of clarity on engineering work processes
 - How the work gets done
 - Interfaces/multi-geographical areas
 - Transient work force
- Contracting strategies designed to shield from risk mean relinquishing control

- Lack of understanding of sources of variability i.e., bottlenecks to getting work done
- Earn and burn mentality
 - Is the "right" work being executed?
 - Resource allocation
- Work not synchronized in an integrated production system

Project Production Management

Project Production Control approach

Deployed PPC in Front End Engineering Design and detailed design

- Mapping of the work process allows clarity to all involved; disciplines, work locations, interfaces
 - Design progression
 - Batch size of deliverables
 - Vendor data
- Knowledge work is different from craft work
 - Knowledge work the tool supports the worker
 - Craft work the worker supports the tool

- Front End Engineering Design (FEED) is different from detailed design
 - FEED is dynamic
 - Production engineering
 - Engineering integrity

© 2018 Chevron 5

HVAC controls and instrumentation layout Standard process

Engineering thought it was a seven step process

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
PLC data available (FB-area)	Wiring PLC vendor data into SPI (ND)	Assign template (ND)	Generate layout, perform self-check, do the checking and issue for FB/HO review (ND)	FB/HO to do the review and send back to ND (FB-area)	Incorporate FB/HO review. Comments if any and send final copy to PDDM for issue (ND)	Issue on POL (ND-area and PDDM)

Actual after production planning – 200

Deployed PPC in Front End Engineering Design and detailed design

- Mapping of the work process allows clarity to all involved; disciplines, work locations, interfaces
 - Design progression
 - Batch size of deliverables
 - Vendor data
- Knowledge work is different from craft work
 - Knowledge work the tool supports the worker
 - Craft work the worker supports the tool

- Front End Engineering Design (FEED) is different from detailed design
 - FEED is dynamic
 - Production engineering
 - Engineering integrity

Changes how we do the work

- Places planning in the hands of people doing the work
- One tool/data set eliminates the need for trackers (shadow systems)
- Provides immediate visibility to variability within the engineering work process
 - Focus on analytics
 - Increases morale and trust

What we have achieved

- Integrated, collaboratively agreed standard processes and alignment on work execution
- Focuses the team on the "right" work to advance the project
 - Deliverable delivery
 - Resource planning
- Performance dashboard incorporating PPC analytics
 - Enabled management to rapidly understand areas of concern for immediate action
- Cycle time reduction through optimization

Module	Sealift	LRM Finish	Forecast Finish	06-Nov-18	03-Nov-18	27-Oct-18	20-Oct-18	13-Oct-18	06-Oct-18
47M257	Sealift 02	07-Dec-18	05-Dec-18	2	2	2	-3	-3	8
47M251	Sealift 02	20-Dec-18	16-Nov-18	24	24	29	34	39	6
47M258	Sealift 02	22-Jan-19	02-Jan-19	14	14	19	24	29	39
47M252	Sealift 02	18-Feb-19	19-Dec-18	43	43	48	53	63	13
47M261	Sealift 03	01-Apr-19	02-Apr-19	-1	-1	-1	-1	-1	-1
47M262	Sealift 03	02-May-19	23-Apr-19	7	7	7	7	7	7
47M267	Sealift 03	06-May-19	07-May-19	-1	-1	-1	-1	-1	-1
47M268	Sealift 03	01-Jul-19	09-Jul-19	-6	-6	-6	-6	-6	-6

	SV	CR		Index		
	Average wdays	Trend I Av. %		Actual/LRM	Score	
PROCESS	23	+	88	1.12	0	7
MECH SWIVEL	-1	+	88	1.07	9	7
MECH HANDLING	0	+	81	1.04	9	6
CIVIL	-5	1	94	0.96	9	6
NAVAL	-16	+	92	1.04	9	6
INSTRUMENTATION	-6		91	1.04	9	5
PIPING	-35	+	92	0.91	9	5
STR UPPER TURRET	-18	•	74	1.05	0	4
ELECTRICAL	-51	+	89	0.78	0	4
MECHANICAL	-51	•	73	0.95	0	3
HSE	-102	+	62	0.91	0	3
STR LOWER TURRET	-122	•	73	0.92		3
MARINE	-78	+	72	0.69	3	2
Overall	-27	-	84	0.98	<u> </u>	4

© 2018 Chevron

What we learned

- PPC implementations require dedicated staffing e.g., advanced users, site coordinator, implementation engineers, etc. (depending on deployment model).
- Engineering firms are entrenched in Era 2 model which focuses on reporting and forecasting progress, not about true control of work.
- Ensuring your contractors understand why PPC is being deployed:
 - -"Those that are involved in creating the solution are more likely to support it."

What we learned

- Educate, train, execute and validate
 - Methodical on-boarding process
 - All office locations
- Encourage and continuous improvement culture
- Schedule Management of Change
- Lack of understanding of true capacity needs and allocation
- What do you need to stop doing by implementing PPC
 - Weekly engineering reports
 - -Traditional project controls reports

Leadership is essential

Owner and contractor leadership have a role to play

Communicate the key roles of a leader

- Create a vision
- Enable effective work environment
- Provide support

Establish the culture

- Visibility is good
- "Red" lights are good
- No blame

The future

Projects modeled as a production system during project definition

- Concurrent Engineering
 - Designing how the work gets done
- Target value design
- Integrated with our supply chain

- Integrated platform for execution
 - Design modelling
 - –PPM integrated execution tools
- Keep the end in mind

"We cannot solve our problems with the same thinking we used when we created them." – Albert Einstein

Closing

- PPM enables the breaking down of project complexity.
- Leadership is key.
- It will take perseverance to change our industry.

James (Jim) E Craig, PE
Manager, PRC Consulting Services
Interface
+1 713 228 7784
jim.craig@chevron.com

