Emerging Technologies PPM Course

Martin Fischer

Kumagai Professor in the School of Engineering Professor, Civil & Environmental Engineering Director, Center for Integrated Facility Engineering (CIFE) Stanford University, <u>fischer@stanford.edu</u> Member, Technical Committee, PPI Member, National Academy of Construction

Who wants to deliver all their projects fast and at low cost?

Questions

- How much of the information used to build your projects is last touched by a human?
- How much time does your staff spend on tasks a computer could do?
- How many things are you not doing because they take too long?
- How often does a project team make a poor decision because they cannot see the big picture?
- How often do executives make a poor decision because they don't understand an important detail?

Do your practices with respect to these questions increase or decrease variability on your projects?

How much of the information used to build your projects is last touched by a human?

Construction Schedule Workshop on May 25, 26, and 28, 2018 Find the "best" formwork and sequencing option for a high-rise building project

Participants:

- Skanska Property Development, Construction, and Quality Control
- ALICE
- CIFE-Stanford Researchers

Key construction decisions: formwork and sequencing

- Peri RCS Rail Climbing System
- \$165,000 / month
- Time to raise / set up formwork: 20 hours
- Time to close formwork:6 hours
- Crane required to raise and
 PPIC ose formwork

- Peri ACS Core 400 Self-Climbing System
- \$295,000 / month
- Time to raise / set up formwork: 10 hours
- Time to close formwork:
 2 hours
- No crane required to raise and close formwork

Sequential

Z3

71

Parallel

73

Results overview: cost and schedule

RCS Rail Sequential RCS Rail Parallel ACS Rail Sequential ACS Rail Parallel

Slab Formwork Cost (\$/m2)
Column Formwork Cost (\$/m3)
Concrete Pump Cost (\$/month)
Edge Formwork Cost (\$/month)
Core Formwork Cost (\$/month)

Schedule duration (calendar days) PPI RCS Rail Sequential RCS Rail Parallel ACS Rail Sequential ACS Rail Parallel

Results Overview – Slab + Column Formwork

Find slab and column formwork required to achieve the "optimal" schedule for each option

Key simulation and collaboration information

# Schedule scenarios generated	341
# Optimization runs	65
# Schedule scenarios used for analysis	24
Average time to reschedule	10 mins

BIM simplification and zone breakdown

Input: Structural Model Required Revit modeling time: 2 days

3,860 building components 344 construction elements

Construction recipes

Task Nar	me					-	
Assign	Task Name Pour Concrete Assigned Resources					-	
		EQUIPMENT	MATERIALS	SPACES	RATES	DURATION	
	Does this operation require a Movable Crane?						
	Type Qty Rqd. Concrete Pump						
			+ Assign Eq	uipment		¢ -	
L							

Add the tasks required to build an element. Drag from **o** to connect relationship and lag.

🔏 Link Tasks 🔻 🛛 Cr<u>eate Task</u>

Recipe Name Core Walls - ACS (durations)

Notes description

Next Elements

Given the recipes and BIM, 4D models are generated automatically

PPI

ALICE allows set-based construction scheduling

FE

... for many conditions or situations

FE

Using people and computers really well

How much time does your staff spend on tasks a computer could do?

How many things are you not doing because they take too long?

Automatically generating a BIM from a laser scan

construction

post - occupancy

Semantic Building Parser Research With Silvio Savarese, Iro Armeni, Amir Zamir, buildingparser.stanford.edu

Making BIM for Existing Buildings Affordable

Automatically Generated Space Statistics

Ceiling

Total Area: 667.67 m2

Walls

Total Number: 42 Total Area: 479.5 m2

Chairs

Total Number: 106

Floor

Total Area: 639.36 m2

Table

Total Number: 45

Columns

Total Number: 39

How often does a project team make a poor decision because they cannot see the big picture?

How often do executives make a poor decision because they don't understand an important detail?

Consumption Patterns

PPI

Household Energy Consumption Segmentation Using Hourly Data, J. Kwac, J. Flora and R. Rajagopal, IEEE Trans. Smart Grid, 5:1, pp 420-430, 2014.

Stanford University

STRATEGIC PROJECT SOLUTIONS®

The material revolution is not far behind the digital revolution.

Additive Manufacturing is (not yet) cost/schedule-competitive, but environmentally advantageous (work by Nataša Mrazović)

FE

CATEGORY		AM (EBM - DMLS)	CM
А	Technology Applicability	\checkmark	\checkmark
S	Schedule	7x	1x
E	Environmental impact (kg CO2)	1x	7x
С	Costs	10x	1x

2019 resolutions

- Generate 10% of the information from which you build <u>directly</u> from a computer.
- Free up 5% of your staff's time from repetitive tasks.
- Do 2 new "things" because they are (partially) automated.
- Connect the detail and the big picture for 2 issues.
- 3D-print 10 physical objects needed on projects, 2 of them repeatedly.

11-year collaboration between SPS/PPI and CIFE on Virtual Design and Construction (VDC) 1.0

VDC 2.0 \rightarrow PPM

PPI and CIFE are developing a professional education program on PPM.

- 1-week introductory course
- 6-month implementation with check-ins and support
- 2-day synthesizing event
- Learn PPM concepts and their application
- Understand the role of technology in the context of PPM
- Apply PPM on projects
- Create a community and culture of PPM

